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LETTER TO THE EDITOR 

Topological horseshoe and numerically observed chaotic 
behaviour in the Henon mapping 

C Tressert, P Coullett and A Arneodoi 
I Equipe de MCcanique Statistique, UniversitC de Nice, Parc Valrose, 06034 Nice Cedex, 
France8 
$ Laboratoire de Physique ThCorique, UniversitC de Nice, Parc Valrose, 06034 Nice Cedex, 
Francell 

Received 8 January 1980 

Abstract. We prove the existence of a topological horseshoe in the Henon mapping for 
values of the parameters such that a strange attractor is numerically observed. 

Since Henon (1976) many authors have recently studied the dynamics of the 
diffeomorphisms of the plane 

Fa,b: (x, Y)+(1-ax2+y, bx). (1) 

Interest in these mappings has been stimulated by Henon’s numerical evidence for a 
‘strange attractor’ when a = 1.4 and b = 0.3. Such a behaviour has also been observed 
for different values of a and b (Feit 1978, Simd 1978, Curry 1979). Nevertheless the 
actual existence of a strange attractor is far from being proved: it has been proposed 
(Newhouse 1977) that what Henon did observe is merely a long periodic orbit. 

A simpler question is: does there exist chaotic behaviour-e.g. transverse homo- 
clinic points or horseshoe effects: Smale (1967), Nitecki (1971)-in (l)? 

Numerical evidence has been given for the existence of transverse homoclinic points 
by Curry (1979) for Henon’s values of a and b, and by Simd (1978) for lower values of a. 
Analytical proofs have been obtained by Marotto (1979) for b small enough, and by 
Devaney and Nitecki (1979) for any b and a larger than 2(1+ lb/)2. However, neither of 
these works allows us to ensure the existence of homoclinic points for values of a and b 
such that a strange attractor is observed for (1): Marotto does not provide an explicit 
range of b values for which his theorem applies, and the values of a considered by 
Devaney and Nitecki are such that almost every point in R2 has an orbit which diverges. 

In the present Letter we give a method to prove that a topological horseshoe 
(Devaney and Nitecki 1979) is imbedded in the dynamics of (1) (this implies the 
existence of homoclinic points) for parameter values such that a chaotic behaviour is 
numerically displayed. 

When the non-wandering set of Fa,b is non-void ((1 - b)2+4a S O ) ,  this diffeomor- 
phism is topologically conjugate to 

G R , b :  (x, Y)+(Y,Ry(l-y)+bx), (2) 
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a conjugacy homeomorphism being 

(x,  y ) - +  !ay + P ,  a ’ x  + P ’ ) ,  (3) 

R = 1 - b  + [ ( 1 -  b)2+4a]1’2 ( 4 )  

CY = R / a ,  CY’ = ba, P = -R/2a ,  p ‘  = bp. (5) 

where 

and 

When b = 0, GR,OIQ is an endomorphism of the square Q =T [ 0 , 1 ]  x [0 ,1]  which maps 
Q on the graph of f R ( x )  = R x ( 1  - x )  restricted to [0 ,1] .  Before considering more 
general situations, let us restrict ourselves to the case 

O < R < 4 ,  O <  b < 1 - R / 4 .  ( 6 )  

GR,b(Q! C Q (7) 

Then 

and we can obtain a good geometric comprehension of the global structure of the 
‘strange attractors’ of ( 2 )  in the following way: 

(9 Let us denote 

11 = { (x ,  y ) :  x = U, 0 s y s l}, 

I ,  = {(x,  y ): x = l , o  s y s l} ,  

14 = {( x, y ) :  x = 1, 0 s y s b}. 

1 2  = { ( X ,  ) J ) :  X 0, 0 y < h},  

Then the frontier of (&$(a) is G R , b ( I I )  U 1 2  U C;R.b(13)  U 14 (see figure l ( a ) ) .  

natural to use the change of coordinates 
(ii) In order to have a better understanding of the structure of Gi,b(Q),  it is quite 

(9) (X,  Y )  E ( x ,  [y -- R x ( 1  - ~ ) ] / b ) ,  

which brings GR,b(Q) on the square Q. In these new coordinates G R , b  reads 

(X ,  Y ) +  (RX(1  - X ) +  b y ,  X ) ,  (10) 

which is precisely ( 2 )  with the roles of X and Y exchanged (figure l ( b ) ) .  
(iii) By iterating this procedure we can draw the first approximations of 

(7,=o G&,b(Q) which contain the attractors (they may be strange) of GR,b (figure 

We now come to the problem of the existence of a horseshoe for (2). We first state a 
l ( c ) ,  (4). 

theorem when condition ( 6 )  is satisfied. 

Theorem. There is a value Ro-3.6785735+ defined by fi,(0.5) = (Ro- l ) / R o  such 
that, for Ro < R < 4 and 0 < b << 1 -R/4, there is a total topological horseshoe 
imbedded in the dynamics. 

t Ro is the value studied by Ruelle (1977). It may be interpreted as the value of R corresponding to a first 
tangent homoclinic point (in the sense of Block (1978)) occurring in the unstable manifold of the non-trivial 
fixed point x * = ( R . - ? ) / R  o f f R ( x ) = R x ( l  - x ) .  
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Figure 1. The first steps in the geometrical construction of r )n=O Gk,b(Q).  

Once a horseshoe is exhibited, the further analysis up to the existence of homoclinic 
points is classical, and we refer to Smale (1967), Nitecki (1971) and Devaney and 
Nitecki (1979) for a comprehensive treatment. The horseshoe effect is represented in 
figure 2 for R = 3.7  and b = 0.07. In the same figure we also show the ‘strange attractor’ 
for the same values of the parameters. 

Using the above remarks on the geometry of the successive iterates of Q under GR,b, 
we now outline the construction of a ‘support’ ABCD for the topological horseshoe; 
ABCD is defined as follows (figure 2): 

AB is a horizontal line {(x, y ) I x ~  x X B ,  y = YA}, 
BCisana rco f  p a r a b o l a { ( x , y ) ~ x ~ ~ x x ~ ~ , y = R x ( l - x ) + b } ,  

CD is a horizontal line {(x, y)lxa =z x S XC, y -- yc}, 

D A  is an arc of parabola {(x, y ) l x ~  d x S XA, y = Rx (1 - x)}. 

The proof of the above-mentioned theorem consists of showing that there exist A, R, C, 
D such that Gi,blABCD is actually a topological horseshoe. When (6) is verified, this is 
achieved in three steps which involve a long but trivial series of majorations. 

Step 1. C, D are defined by 

YC=YP3XC=RXC(1-XC)+b =RxD(l-xD). (12) 
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Figure 2. ( a )  In the ( x ,  y )  coordinates, the strange attractor for R = 3.7 and b = 0.07 is 
represented, together with the support ABCD of the topological horseshoe; the point M is 
defined in the main text. ( b )  For the same parameter values, ABCD, GR,*(ABCD) and 
G;,,(ABCD) are represented in the (X ,  Y )  coordinates. Gi,blABCD is a topological 
horseshoe. 

Then for P E  CD 

Y Gi.b(p) ’ Yc or x G&,(P) < 0.5 - (13) 
S t e p 2  In order to prove that the bend of Gi ,6(ABCD) is out of ABCD as presented 

in figure 2, we introduce the point M as defined by 

y ~ = 0 * 5  =RxM(l-xM). (14) 

Y G ~ . ~ ( N )  > Yc or XGSJN) < 0.5, (15) 

Y N = R ~ N ( ~ - ~ N ) + ~  = Y G ~ . ~ ( M ) .  (16) 

Then either 

where 

Step 3. (14), (1 5 )  and (16) imply that there exist A and B such that on one hand the 
bend of G&(ABCD) is out of ABCD, i.e. 

Y B =  Y A > Y G L , ( M ) ?  (17) 

and on the other hand G&(ABCD) crosses ABCD twice, i.e. for P E  AB the condition 
(13) is satisfied. From (11) we deduce that 

y B = y A = R x A ( l - ~ A ) = R x , ( l - ~ g ) + b .  (18) 

For other values of R and b which are not restricted by condition (6), a specific support 
(depending on R and b values) forn a horseshoe can still be defined. In figure 3 a 
polygon A B C D U r a w n ,  such thdt G;,&,BCD is a topological horseshoe when b = 0.3 
and R = 0.7+J6.09-3.16779.. . , which correspond to Henon (1976) values of the 
parameters. 

To conclude this Letter let us emphasise that the chaotic behaviour numerically 
observed for a given map F (real endomorphism or diffeomorphism of the plane) always 
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Figure 3. A polygon such that G i , b l A B ~ D  is a topological horseshoe for R and b 
corresponding to Henon's parameter values. 

seems to be associated with the existence of a family {a,} of polygons such that: (1) for 
each a there exists n ( a )  such that F"'"'lo, is a topological horseshoe; (2) F n ( a ) l ~ ,  - Q, 
is eventually mapped in the set U, Q,. 
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