Topological horseshoe and numerically observed chaotic behaviour in the Henon mapping

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1980 J. Phys. A: Math. Gen. 13 L123
(http://iopscience.iop.org/0305-4470/13/5/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 05:13

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Topological horseshoe and numerically observed chaotic behaviour in the Henon mapping

C Tresser \dagger, P Coullet \dagger and A Arneodo \ddagger
\dagger Equipe de Mécanique Statistique, Université de Nice, Parc Valrose, 06034 Nice Cedex, France§
\ddagger Laboratoire de Physique Théorique, Université de Nice, Parc Valrose, 06034 Nice Cedex, France

Received 8 January 1980

Abstract

We prove the existence of a topological horseshoe in the Henon mapping for values of the parameters such that a strange attractor is numerically observed.

Since Henon (1976) many authors have recently studied the dynamics of the diffeomorphisms of the plane

$$
\begin{equation*}
F_{a, b}:(x, y) \rightarrow\left(1-a x^{2}+y, b x\right) . \tag{1}
\end{equation*}
$$

Interest in these mappings has been stimulated by Henon's numerical evidence for a 'strange attractor' when $a=1.4$ and $b=0 \cdot 3$. Such a behaviour has also been observed for different values of a and b (Feit 1978, Simó 1978, Curry 1979). Nevertheless the actual existence of a strange attractor is far from being proved: it has been proposed (Newhouse 1977) that what Henon did observe is merely a long periodic orbit.

A simpler question is: does there exist chaotic behaviour-e.g. transverse homoclinic points or horseshoe effects: Smale (1967), Nitecki (1971)—in (1)?

Numerical evidence has been given for the existence of transverse homoclinic points by Curry (1979) for Henon's values of a and b, and by Simó (1978) for lower values of a. Analytical proofs have been obtained by Marotto (1979) for b small enough, and by Devaney and Nitecki (1979) for any b and a larger than $2(1+|b|)^{2}$. However, neither of these works allows us to ensure the existence of homoclinic points for values of a and b such that a strange attractor is observed for (1): Marotto does not provide an explicit range of b values for which his theorem applies, and the values of a considered by Devaney and Nitecki are such that almost every point in \mathbb{R}^{2} has an orbit which diverges.

In the present Letter we give a method to prove that a topological horseshoe (Devaney and Nitecki 1979) is imbedded in the dynamics of (1) (this implies the existence of homoclinic points) for parameter values such that a chaotic behaviour is numerically displayed.

When the non-wandering set of $F_{a, b}$ is non-void $\left((1-b)^{2}+4 a \geqslant 0\right)$, this diffeomorphism is topologically conjugate to

$$
\begin{equation*}
G_{R, b}:(x, y) \rightarrow(y, R y(1-y)+b x), \tag{2}
\end{equation*}
$$

§ Laboratorie de Physique de la Matière Condensée Associé au CNRS.
$\|$ Equipe de Recherche Associée au CNRS.
a conjugacy homeomorphism being

$$
\begin{equation*}
(x, y) \rightarrow\left(\alpha y+\beta, \alpha^{\prime} x+\beta^{\prime}\right), \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
R=1-b+\left[(1-b)^{2}+4 a\right]^{1 / 2} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha=R / a, \quad \alpha^{\prime}=b \alpha, \quad \beta=-R / 2 a, \quad \beta^{\prime}=b \beta . \tag{5}
\end{equation*}
$$

When $b=0, G_{R, 0}$ is an endomorphism of the square $Q=[0,1] \times[0,1]$ which maps Q on the graph of $f_{R}(x)=R x(1-x)$ restricted to $[0,1]$. Before considering more general situations, let us restrict ourselves to the case

$$
\begin{equation*}
0<R<4, \quad 0<b<1-R / 4 . \tag{6}
\end{equation*}
$$

Then

$$
\begin{equation*}
G_{R, b}(Q) \subset Q \tag{7}
\end{equation*}
$$

and we can obtain a good geometric comprehension of the global structure of the 'strange attractors' of (2) in the following way:
(i) Let us denote

$$
\begin{align*}
& I_{1}=\{(x, y): x=0,0 \leqslant y \leqslant 1\}, \\
& I_{2}=\{(x, y): x=0,0 \leqslant y \leqslant b\}, \\
& I_{3}=\{(x, y): x=1,0 \leqslant y \leqslant 1\}, \tag{8}\\
& I_{4}=\{(x, y): x=1,0 \leqslant y \leqslant b\} .
\end{align*}
$$

Then the frontier of $G_{R, b}(Q)$ is $G_{R, b}\left(I_{1}\right) \cup I_{2} \cup G_{R . b}\left(I_{3}\right) \cup I_{4}$ (see figure $1(a)$).
(ii) In order to have a better understanding of the structure of $G_{R, b}^{2}(Q)$, it is quite natural to use the change of coordinates

$$
\begin{equation*}
(X, Y)=(x,[y-R x(1-x)] / b), \tag{9}
\end{equation*}
$$

which brings $G_{R, b}(Q)$ on the square Q. In these new coordinates $G_{R, b}$ reads

$$
\begin{equation*}
(X, Y) \rightarrow(R X(1-X)+b Y, X), \tag{10}
\end{equation*}
$$

which is precisely (2) with the roles of X and Y exchanged (figure 1(b)).
(iii) By iterating this procedure we can draw the first approximations of $\cap_{n=0} G_{R, b}^{n}(Q)$ which contain the attractors (they may be strange) of $G_{R, b}$ (figure $1(c),(d))$.

We now come to the problem of the existence of a horseshoe for (2). We first state a theorem when condition (6) is satisfied.

Theorem. There is a value $R_{0} \sim 3.6785735 \dagger$ defined by $f_{R_{0}}^{3}(0.5)=\left(R_{0}-1\right) / R_{0}$ such that, for $R_{0}<R<4$ and $0<b<1-R / 4$, there is a total topological horseshoe imbedded in the dynamics.
$\dagger R_{0}$ is the value studied by Ruelle (1977). It may be interpreted as the value of R corresponding to a first tangent homoclinic point (in the sense of Block (1978)) occurring in the unstable manifold of the non-trivial fixed point $x^{*}=(R-1) / R$ of $f_{R}(x)=R x(1-x)$.

Figure 1. The first steps in the geometrical construction of $\bigcap_{n=0} G_{R, b}^{n}(Q)$.

Once a horseshoe is exhibited, the further analysis up to the existence of homoclinic points is classical, and we refer to Smale (1967), Nitecki (1971) and Devaney and Nitecki (1979) for a comprehensive treatment. The horseshoe effect is represented in figure 2 for $R=3.7$ and $b=0.07$. In the same figure we also show the 'strange attractor' for the same values of the parameters.

Using the above remarks on the geometry of the successive iterates of Q under $G_{R, b}$, we now outline the construction of a 'support' ABCD for the topological horseshoe; ABCD is defined as follows (figure 2):

AB is a horizontal line $\left\{(x, y) \mid x_{\mathrm{A}} \leqslant x \leqslant x_{\mathrm{B}}, y=y_{\mathrm{A}}\right\}$,
BC is an arc of parabola $\left\{(x, y) \mid x_{\mathrm{C}} \leqslant x \leqslant x_{\mathrm{B}}, y=R x(1-x)+b\right\}$,
CD is a horizontal line $\left\{(x, y) \mid x_{\mathrm{D}} \leqslant x \leqslant x_{\mathrm{C}}, y=y_{\mathrm{C}}\right\}$,
DA is an arc of parabola $\left\{(x, y) \mid x_{\mathrm{D}} \leqslant x \leqslant x_{\mathrm{A}}, y=R x(1-x)\right\}$.
The proof of the above-mentioned theorem consists of showing that there exist $\mathrm{A}, \mathrm{B}, \mathrm{C}$, D such that $\left.G_{R, b}^{2}\right|_{\mathrm{ABCD}}$ is actually a topological horseshoe. When (6) is verified, this is achieved in three steps which involve a long but trivial series of majorations.

Step 1. C, D are defined by

$$
\begin{equation*}
y_{\mathrm{C}}=y_{\mathrm{D}}=x_{\mathrm{C}}=R x_{\mathrm{C}}\left(1-x_{\mathrm{C}}\right)+b=R x_{\mathrm{D}}\left(1-x_{\mathrm{D}}\right) . \tag{12}
\end{equation*}
$$

Figure 2. (a) In the (x, y) coordinates, the strange attractor for $R=3.7$ and $b=0.07$ is represented, together with the support $A B C D$ of the topological horseshoe; the point M is defined in the main text. (b) For the same parameter values, $\mathrm{ABCD}, G_{R, b}(\mathrm{ABCD})$ and $G_{R, b}^{2}(\mathrm{ABCD})$ are represented in the (X, Y) coordinates. $\left.G_{R, b}^{2}\right|_{\mathrm{ABCD}}$ is a topological horseshoe.

Then for $P \in C D$

$$
\begin{equation*}
y_{G_{\mathrm{R} . \mathrm{b}}^{2}(\mathrm{P})}>y_{\mathrm{C}} \quad \text { or } \quad x_{G_{\mathrm{R} . \mathrm{b}}^{2}(\mathrm{P})}<0.5 . \tag{13}
\end{equation*}
$$

Step 2. In order to prove that the bend of $G_{R, b}^{2}(\mathrm{ABCD})$ is out of ABCD as presented in figure 2, we introduce the point M as defined by

$$
\begin{equation*}
y_{\mathrm{M}}=0 \cdot 5=R x_{\mathrm{M}}\left(1-x_{\mathrm{M}}\right) . \tag{14}
\end{equation*}
$$

Then either

$$
\begin{equation*}
y_{G_{R, b}^{2}(\mathbb{N})}>y_{\mathrm{C}} \quad \text { or } \quad x_{G_{R, b}^{2}(\mathbb{N})}<0 \cdot 5 \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
y_{\mathrm{N}}=R x_{\mathrm{N}}\left(1-x_{\mathrm{N}}\right)+b=y_{G_{R, b}^{2}(\mathrm{M})} . \tag{16}
\end{equation*}
$$

Step 3. (14), (15) and (16) imply that there exist A and B such that on one hand the bend of $G_{R, b}^{2}(\mathrm{ABCD})$ is out of ABCD , i.e.

$$
\begin{equation*}
y_{\mathrm{B}}=y_{\mathrm{A}}>y_{G_{\mathrm{R}, \mathrm{~b}}^{2}(\mathrm{M})}^{2}, \tag{17}
\end{equation*}
$$

and on the other hand $G_{R, b}^{2}(\mathrm{ABCD})$ crosses ABCD twice, i.e. for $\mathrm{P} \in \mathrm{AB}$ the condition (13) is satisfied. From (11) we deduce that

$$
\begin{equation*}
y_{\mathrm{B}}=y_{\mathrm{A}}=R x_{\mathrm{A}}\left(1-x_{\mathrm{A}}\right)=R x_{\mathrm{B}}\left(1-x_{\mathrm{B}}\right)+b . \tag{18}
\end{equation*}
$$

For other values of R and b which are not restricted by condition (6), a specific support (depending on R and b values) forn a horseshoe can still be defined. In figure 3 a polygon ABCD is drawn, such that $\left.G_{R, b}^{2}\right|_{\mathrm{ABCD}}$ is a topological horseshoe when $b=0.3$ and $R=0.7+\sqrt{6.09} \simeq 3.16779 \ldots$, which correspond to Henon (1976) values of the parameters.

To conclude this Letter let us emphasise that the chaotic behaviour numerically observed for a given $\operatorname{map} F$ (real endomorphism or diffeomorphism of the plane) always

Figure 3. A polygon such that $\left.G_{R, b}^{2}\right|_{A B C D}$ is a topological horseshoe for R and b corresponding to Henon's parameter values.
seems to be associated with the existence of a family $\left\{Q_{\alpha}\right\}$ of polygons such that: (1) for each α there exists $n(\alpha)$ such that $\left.F^{n(\alpha)}\right|_{Q_{\alpha}}$ is a topological horseshoe; (2) $\left.F^{n(\alpha)}\right|_{Q_{\alpha}}-Q_{\alpha}$ is eventually mapped in the set $\bigcup_{\alpha} Q_{\alpha}$.

References

Block L 1978 Proc. Am. Math. Soc. 72576
Curry J H 1979 Commun. Math. Phys. 68129
Devaney R and Nitecki Z 1979 Commun. Math. Phys. 67137
Feit S D 1978 Commun. Math. Phys. 61249
Henon M 1976 Commun. Math. Phys. 5069
Marotto F R 1979 Commun. Math. Phys. 68187
Newhouse S 1977 Preprint IHES
Nitecki Z 1971 Differentiable Dynamics (Cambridge, Mass.: MIT)
Ruelle D 1977 Commun. Math. Phys. 5547
Simó C 1978 Preprint University of Barcelona
Smale S 1967 Bull. Am. Math. Soc. 73747

